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A simplified mathemat ica l  model  of the the rma l  field c lose to the boundary of two di f ferent  
thrott l ing liquids is  considered.  

The study of t he rma l  phenomena when liquids a re  thrott led has given r i s e  to the possibi l i ty of developing 
new methods for making physical  investigations. There  is t he re fo re  a need for a fur ther  development  of the 
theory  of the rmal  p roce s se s  during throt t l ing [1]. In this paper  we consider  the problem of the t he rma l  field 
c lose to the boundary of two different  throt t l ing liquids. We assume that: 1) the par t  played by convective heat  
t r an s f e r  is considerably g rea te r  than the par t  played by conductive heat  t r ans f e r ,  so that the effect  of the rma l  
conduction along the thrott l ing path can be  neglected; 2) the boundary the between the throt t l ing liquids is 
plane; and 3) the t rans ien ts  which occur  when the p r e s s u r e  is building up can be neglected,  i.e.~ 8P /a t  = 0. 

P re l imina ry  calculations show that,  according to condition 1, the model  considered below is applicable 
for  throt t l ing speeds u > h / c p R .  For  values of the heat  capacity c = 2000 J / k g . d e g  K, a densi ty p = 800 
k g / m  3, ~ = 1.7 W / m .  deg K and dimensions of the throt t l ing region R = 1 m,  we obtain u > 10 -6 m / s e c .  

The mathemat ical  formulat ion of the problem in dimensionless  var iables  has the fo rm 

Here  Fo = 
function. 

a2t/R2; ~t = Y~a2/u~R2; 

OTi [ OTt OPi ] = a2 OZTt . z > O; • >0,  (1) 
OF---o + u ~ ~ + sE On J Oz a ' Fo > O; 

aT2 + aTe. aP2 _ a~T~ . z < O; x >  O, (2) 
OF---o- ~ + six a~ az ~ ' Fo>O;  

T1,21Fo=o = 0; T1,21x=o = 0, (3) 

(gT' I =~,  OT' I (4) Tdz=o = T~l~-o; ~ ~=o Oz ~o" 

z = ~ / R ;  a 2 = a l /a2;  u = u l /u2 ;  h = M / M .  T l g ( z ,  ~ ,  Fo)  is abounded  

In two-dimensional  L a p l a c e - C a r s o n  image space 

the problem takes the form 

v, ,_~ ----- sq i dFo i exp [--  (sFo + qu)] T, ,2  (Fo, • z) dx 
0 0 

(5) 

d2~i a z - -  = (s -t- uq) vi + uelqPt (q); z > 0, 
dz z 

daY2 - -  (s -4- q) v2 -4- el lqP~ (q); z < 0, 
dz ~ 

Ov~ 002 1 
V&=o=V21~=o; ~ ~-~ = ~ 0z ,z--o 

The solutions of (6) and (7), taking into account the boundedness,  can be r ep resen ted  in the form 

uelqPt(q) + C ,  exp ( - - ] / s ~ - ~  z / ;  z > 0 ,  vi s + uq a ,~ 

(6) 

(7) 

(s) 

(9) 
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vz = -- + G,exp (-- V-s + q Izl); z < o. (10) 
sHqP2(q) 

s+q 
From the boundary conditions (8) we obtain a sys tem of two equations for determining C i and C 2. 

The solution of this sys tem has the form 

Ct = [ us,qP, (q) 
[ s+ uq 

s,l_qP~_(q) ] ! (11) 
] V U - - - -  ' s+q 1 +  - +uq 

~ a V  s + q  

Cz=[ sl,qP~(q) ustqPt(q) ] 1 (12) 
s+q s+uq 1+ LaVs+----~ 

Substituting (12) and (11) into (9) and (10), respect ively,  we obtain 

vt uexqPt (q) --b [ uslqPt (q) 
s-}- uq _ s-+-uq 

v~ sljqPz(q)s+q ~. [ slxqPz(q)s+q 

. q  

( V~+ uq -~; 

To check the solution obtained we will consider the special  case u = 0, i .e. ,  ui = 0 and u2 ~ 0. In this case 
we obtain f rom (13) and (14) 

exp ( . z  U s  ) z > 0 :  (15) Vi sIIqP~ (q) 
s + q  Z a V ~ ,  q 

1 + V T  

vz ellqPz(q) [ l - s + q  exp(--V-s+qlz[) ] V . _ ~ _  ; z<O.  (16) 

1+ 
J~t V-s + q 

As might have been expected, Eqs. (15) and (16) a re  identical (apart from the notation) with the corresponding 
solutions of the problem of the thermal  field close to the boundary of a thrott l ing liquid given in [1]. 

It is difficult  to obtain the originals of t r ans fo rms  (13) and (14). Hence, we will consider two important 
pract ical  cases  below. 

To es t imate  the t ime taken for the thermal  mode to build up, we will consider the case of identical ra tes  
of throttl ing of the fluids u = 1. F rom (13) and (14) we obtain 

v~ elqP~(q)-l-- [slqP,(q) ei~qPz(q) ] exp (-- V s + q  z )  
-s-+ q [_ - ~  q s + q 1 ' (17) 

1 §  ~a 

e11qP2(q) + [ e11qPz(q) ] 
vz = -- s + q s + q l + Z a  

Using the operational relat ions in [2], we have after  appropriate integration 

{ - e ~ [ P ~ ( x ) . P ~ ( x - - F o ) ]  :for •  1 ; O[elP,(x)--enP~(x)] 
T i =  --eiPi(• fgr •  -[ 1 Ox 1 + ~ o  

exp (-- 1i/s + q M) (18) 

erfc (2 a 1/zT__x )lIFo--(• (19) 

T2----- / -e t t tP2(•  --  P2 (m --  Fo)] for •  . 1 ? O[e,IP+(•215 erfc( z ) I[Fo--(• 
0 

(2 0) 

As can easi ly be shown from (19) and (20), the t ime taken for the temperature  field to become established in 
the case considered for z = 0 corresponds to Fo = ~ .  

The s teady-s ta te  tempera ture  distr ibution s = 0 is given by the expressions 
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Fig. 1. Graph of T aga ins t  VruT~.a 
for  z = O. 
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v, = - -  ~, P, (q) + [~, P, (q) - -  ~,, p~ (q)] 

Fig. 2. Graphs  of  T aga ins t  z. The values  
a r e  calculated using the  following equations:  
I) T = (T, + ~ I P i ( x ) ) / ( t i P i ( x )  - EIIP2(x)); 
2) T = ('1"2 + eIIP2(~t))/(~IIP2(x) -- eIPI(X)); 
a) for/ = a= u=l,b) k = a= u = 0.5. 

exp (- U-h--z-V-~)  
s 

V-u- 1 +  ~/ 
z > O ,  (21) 

vz = ~ eftP~ (q) + [enP2 (q) - - e iP i  (q)] exp ( ~  [z] V"q-) . z < o. 

t+  Vh- 
The or ig ina l  of Eqs.  (21) and (22) have  the fo rm 

(22) 

1 + - - ~  

N 

T z = _ e , ~ p ~ ( x )  + 1 ~ !O[e,,Pz(x)--e,P,(X)lerfc(~)dX.ox .(24) 
1 + ~ - ~ - '  

T, .2 --" e,P,. (x) I 
~ i P , ( • 2 1 5  - t + V u 

~t 

Fo r  z = 0 we obtain f rom (23) and (24) 

T =  (25) 

The resulks  of calculat ions of  T a s  a function of  the p a r a m e t e r  ~ /u /Xa a r e  shown in Fig. 1. In o rde r  to 
e s t ima t e  the ef fec t  of  hea t  t r a n s f e r  on the s t e a d y - s t a t e  t h e r m a l  field a t  the  boundary  of  two throt t l ing l iquids,  
we wil l  consider  the following two ca s e s :  

a) the ideal ized case  of the throt t l ing of liquids with the s a m e  t h e r m a l  and hydrodynamic  p rope r t i e s ,  but  
d i f ferent  J o u l e - T h o m s o n  coeff icients  ~,I = X2, al  = a2, ul = u2. Then, T = ~2, Le. ,  the t e m p e r a t u r e  of the 
boundary of the liquids is equal  to the a r i thmet i c  m e a n  of the t e m p e r a t u r e s  of  the throt t l ing liquids ignoring 
hea t  t r a n s f e r ;  

b) throt t l ing  of wa te r  a r~  pe t ro l eum in sandstone [3]: 7~i = 1.7 W / m - d e g  K, a l  = 11 .6-10  - r  m2 / sec ,  X2 = 
2.46 W / m ' d e g  K, a2 = 12.8-10 -7 m~/sec ,  and u = i/2 , we obtain T = 0.67. 

To e s t ima t e  the reg ion  of influence of hea t  t r a n s f e r  along the z axis  we can  use  the r e su l t s  of ca l cu la -  
t ions of T c a r r i e d  out on a computer  using Eqs. (23) and (24) and r e p r e s e n t e d  in Figs.  2a and b. 
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N O T A T I O N  

t, t ime,  T 1 and T2, t empera tu re  in the regions z > 0 and z < 0, respec t ive ly ;  a l ,  ag, 11, and ~,~, t h e r -  
mal  diffusivity and t he rma l  conductivity in the corresponding regions;  ~ and ~, coordinates;  ei, eii , J o u l e -  
Thomson coefficients  in the corresponding regions;  P~ and P2, p r e s su re  distr ibutions;  R, charac te r i s t i c  
length, 

I; x > 0; ' 2 i 
l ( x )  = e r i c ( x )  : e-Z~'dz.  

O; x<O;  ~ - ,  X 

11 
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A P P L I C A T I O N  O F  I N T E G R A L - R E L A T I O N  M E T H O D  

IN U S I N G  C O M P L E X  M O D E L S  OF  T U R B U L E N C E  

T.  A.  G i r s h o v i c h  UDC532.517.4 

The general izat ion of the in tegra l - re la t ion  method to the case  when turbulence models  with two 
di f ferent ia l  equations for the turbulent  flow proper t i e s  is considered.  

Recently,  in achieving c losure  of the sys tem of equations of turbulent  liquid motion, t he re  has been wide 
use of s e m ie mp i r i c a l  theor ies  of turbulence with one or more  dif ferent ia l  equations for the t rans fe r  of any 
turbulent  flow proper t i e s  [1-5]. Usually, the sys tem of par t ia l  d i f ferent ia l  equations is numerica l ly  integrated,  
which r equ i r e s  considerable  machine time. 

In jet  theory ,  at p resen t ,  integral  methods of  solution a re  widely used [6]. One such is the i n t eg ra l - r e l a -  
t ion method, in which, r a the r  than the initial sys tem of par t ia l  d i f ferent ia l  equations,  the solution for some in-  
tegra l  re la t ions  obtained on the basis  of this sys tem is obtained. Solution by the in tegra l - re la t ion  method r e s t s  
on the s imi la r i ty  between the velocity,  t empera tu re ,  and concentrat ion profi les  in the jet, and reduces  to inte-  
grat ion of a sys tem of ord inary  dif ferent ia l  equations. In a number of jet  problems,  the use of this method 
leads to v e r y  s imple and c lear  re la t ions.  

Usually, integral  re la t ions  a re  obtained on the basis  of equations of motion, heat  t r ans f e r ,  and impur i -  
t ies.  The sys tem of integral  re la t ions  is then closed by the Prandt l  formula  (or another algebraic  formula) for  
the tangential  s t r e s s  and its analogs for the heat  t r an s f e r  and impuri t ies .  

It is also expedient  to use the in tegra l - re la t ion  method when m o r e  complex models  of tlxrbulence - with 
one or  m o r e  di f ferent ia l  equations for any turbulent  p roper t i es  of the liquid - a r e  used. Note that the l i t e ra ture  
includes a number of papers  which use one integral  re la t ion  obtained f rom the different ia l  equation for the 
kinetic energy of turbulent  pulsations. In these  works ,  e i ther  the system of par t ia l  different ia l  equations of 
motion and continuity is solved with this re la t ion  or  this integral  re la t ion is solved for a single pa rame te r  and 
the other  unknowns a re  de termined f rom exper iment  [5, 7, 8]. 

Since more  complex turbulence models  contain new unknowns, it is necessa ry ,  accordingly,  to general ize  
the in tegra l - re la t ion  method so as to obtain new unknowns using integral  re la t ions der ived on the basis  of ad-  
dit ional d i f ferent ia l  equations. 
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