TEMPERATURE FIELD CLOSE TO THE BOUNDARY
OF TWO DIFFERENT THROTTLING LIQUIDS

A. I. Filippov UDC 536.24.02

A simplified mathematical model of the thermal field close to the boundary of two different
throttling liquids is considered.

The study of thermal phenomena when liquids are throttled has given rise to the possibility of developing
new methods for making physical investigations. There is therefore a need for a further development of the
theory of thermal processes during throttling [1]. In this paper we consider the problem of the thermal field
close to the boundary of two different throttling liquids. We assume that: 1) the part played by convective heat
transfer is considerably greater than the part played by conductive heat transfer, so that the effect of thermal
conduction along the throttling path can be neglected; 2) the boundary the between the throttling liquids is
plane; and 3) the transients which occur when the pressure is building up can be neglected, i.e., 9P/8t = 0.

Preliminary calculations show that, according to condition 1, the model considered below is applicable
" for throttling speeds u > »/cpR. For values of the heat capacity ¢ = 2000 J/kg-deg K, a density p = 800
kg/m3, A = 1.7 W/m-deg K and dimensions of the throttling region R = 1 m, we obtain u > 107% m/sec.

The mathematical formulation of the problem in dimensionless variables has the form
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In two-dimensional Laplace—Carson image space
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The solutions of (6) and (7), taking into account the boundedness, can be represented in the form
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From the boundary conditions (8) we obtain a system of two equations for determining C; and C,.
The solution of this system has the form
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Substituting (12) and (11) into (9) and (10), respectively, we obtain
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To check the solution obtained we will consider the special case u = 0, i.e., yy = 0 and u, = 0. In this case
we obtain from (13) and (14)
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As might have been expected, Egs. (15) and (16) are identical (apart from the notation) with the corresponding
solutions of the problem of the thermal field close to the boundary of a throttling liquid given in [1].

1t is difficult to obtain the originals of transforms (13} and (14). Hence, we will consider two important
practical cases below.

To estimate the time taken for the thermal mode to build up, we will consider the case of identical rates
of throttling of the fluids u = 1. From (13) and (14) we obtain
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Using the operational relations in [2], we have after appropriate integration

%

T — { — g1 [Py (%) — Py (x— Fo0)] for u>Fo+ 1 S‘ O [er Py (x) —e11Ps (%)) erfc( ,Z
' —e1Py (%) for x<<Fo 1+ 1 ox 2a Y n—x

)1 [Fo—(x—x)]dx; 19

_MO

k3
_ [—eulPe(®) — Py (x—F0)] for »>Fo 1 311 Py (n) — &1 Py (W] / 2
To = eric
14 A
b

—&11Py () for < Fo ox 2V u—x ) /Fo—(x—x)ldx. (20),

As can easily be shown from (19) and (20), the time taken for the temperature field to become established in
the case considered for z = 0 corresponds to Fo = %.

The steady-state temperature distribution s = 0 is given by the expressions
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The original of Eqs. (21) amd {22) have the form
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Ti.0o—ePy (%) | . 25)

= e1Py (%) — &Py (%) = i Viu’
N .
A

The results of calculations of T as a function of the parameter v u/Ag are shown in Fig. 1. In order to
estimate the effect of heat transfer on the steady-state thermal field at the boundary of two throttling liquids,
we will consider the following two cases: '

a) the idealized case of the throttling of liquids with the same thermal and hydrodynamic properties, but
different Joule —~Thomson coefficients A; = Ag, @3 = @3, W = uy. Then, T = Y%, i.e., the temperature of the
boundary of the liquids is equal to the arithmetic mean of the temperatures of the throttling liquids ignoring
heat transfer;

b) throttling of water and petroleum in sandstone [3]: Ay = 1.7 W/m-deg K, a, = 11.6-1077 m?/sec, As =
2.46 W/m-deg K, a, = 12.8-10"7 m%/sec, and u = !/,, we obtain T = 0.67.

To estimate the region of influence of heat transfer along the z axis we can use the results of calcula-
tions of T carried out on a computer using Egs. (23) and (24) and represented in Figs, 2a and b,

348



NOTATION

t, time, T; and Ty, temperature in the regions z > 0 and z < 0, respectively; a,, a5, Ay, and A, ther-
mal diffusivity and thermal conductivity in the corresponding regions; X and Z, coordinates; €j, £y, Joule—
Thomson coefficients in the corresponding regions; P; and P,, pressure distributions; R, characteristic

length,

co

I;x>0;’f() 2 Y_zgd
I(x)= erfe(x) = ——\¢ 2.
) {0;x<0; V"x
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APPLICATION OF INTEGRAL-RELATION METHOD
IN USING COMPLEX MODELS OF TURBULENCE

T. A. Girshovich UDC 532.517.4

The generalization of the integral-relation method to the case when turbulence models with two
differential equations for the turbulent flow properties is considered.

Recently, in achieving closure of the system of equations of turbulent liquid motion, there has been wide
use of semiempirical theories of turbulence with one or more differential equations for the transfer of any
turbulent flow properties [1-5]. Usually, the system of partial differential equations is numerically integrated,
which requires considerable machine time.

In jet theory, at present, integral methods of solution are widely used [6]. One such is the integral-rela-
tion method, in which, rather than the initial system of partial differential equations, the solution for some in-
tegral relations obtained on the basis of this system is obtained. Solution by the integral-relation method rests
on the similarity between the velocity, temperature, and concentration profiles in the jet, and reduces to inte-
gration of a system of ordinary differential equations. In a number of jet problems, the use of this method
leads to very simple and clear relations.

Usually, integral relations are obtained on the basis of equations of motion, heat transfer, and impuri-
ties. The system of integral relations is then closed by the Prandtl formula (or another algebraic formula) for
the tangential stress and its analogs for the heat transfer and impurities.

It is also expedient to use the integral~-relation method when more complex models of turbulence — with
one or more differential equations for any turbulent properties of the liquid —are used. Note that the literature
includes a number of papers which use one integral relation obtained from the differential equation for the
kinetic energy of turbulent pulsations. In these works, either the system of partial differential equations of
motion and continuity is solved with this relation or this integral relation is solved for a single parameter and
the other unknowns are determined from experiment {5, 7, 8].

Since more complex turbulence models contain new unknowns, it is necessary, accordingly, to generalize
the integral~relation method so as to obtain new unknowns using integral relations derived on the basis of ad-
ditional differential equations.
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